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This paper is devoted to studying wave-particle interaction at “double resonance” condition, i.e., when two
waves interact resonantly with the same group of charged particles. A theoretical Hamiltonian model and a
symplectic numerical code are built to describe the three-dimensional interactions of wave spectra with reso-
nant electrons in a magnetized plasma. Related simulations on the evolution of two waves of close parallel
phase velocities interacting resonantly with particles’ fluxes have been performed, which reveal some common
features which do not depend on the kind of waves, instabilities, and particles’ distributions: after the stage of
linear instability, when the waves’ amplitudes saturate due to particle trapping, a nonlinear process takes place
which is characterized by a quasiperiodical exchange of energy between the waves, depending in particular on
the value of the mismatch between the waves’ resonant velocities. In order to explain such observations, a
simple Hamiltonian model describing the interaction of two different waves of close resonant velocities with a
periodical train of bunches of trapped particles moving synchronously has been built. It allows one to describe
the nonlinear characteristics of this process as well as to estimate analytically its time scale and shows a good
agreement with the numerical simulation results.
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I. INTRODUCTION

This paper is devoted to studying wave-particle interac-
tion at “double resonance” condition, when two waves inter-
act resonantly with the same group of charged particles in a
collisionless plasma. The interest in such a problem is mani-
fold, as discussed below.

First, the study of wave-particle interaction at double
resonance can be considered as an approach to the investiga-
tion of the nonlinear stage of the so-called “sideband insta-
bility.” It is well-known that an unstable monochromatic
wave of frequency � which grows in a plasma usually satu-
rates by trapping resonant particles �1,2�. The system formed
by this wave and the particles that it traps can be perturbed
by the presence of other waves, with resonance velocities
close to that of the main wave, that can interact with the
trapped particles. In particular, a sideband instability can de-
velop, for which the most unstable satellite waves have fre-
quencies equal to ��n�tr, where �tr is the bounce fre-
quency of an electron oscillating in the main wave potential
well and n is an integer. If among all the satellite waves one
has a growth rate significantly larger than the others, the
nonlinear stage of the instability can be reduced to the inter-
action of two waves with one group of resonant particles.
Note that the sideband instability was studied analytically by
considering groups of electrons with close velocities and
phases interacting with two or more waves at Landau �1,3–6�
and cyclotron resonances �7�, as well as investigated experi-
mentally �see, e.g., �8�, and more recently �9��.

Another reason to study the problem of two or more
waves interacting resonantly with the same group of particles
is aimed at understanding fundamental physical processes of
wave-particle interaction in plasmas which arise in the
theory of nonlinear scattering of waves on particles �2,10�. In
this case, one has usually to perform nonlinear perturbative

calculations where third-order charge density terms present
the following general structure:

� dv
k1

�1 − k1 · v
·

�

�v

k2

�2 − k2 · v

·
�

�v

�k1 − k2�
��1 − �2� − �k1 − k2� · v

·
�

�v
f�v� . �1�

Equation �1� refers to the case of two waves of frequencies
�1 and �2 in an unmagnetized plasma; �=�1−�2 is the
frequency of one of the beating modes; k1, k2 and k=k1
−k2 are the corresponding wave numbers; v is the velocity;
and f�v� usually represents the particles’ velocity distribution
function. It is commonly supposed that the integrations over
the poles in Eq. �1� can be performed separately, taking into
account the contribution of one pole only and calculating the
other integrals using their principal values. It means that the
number of particles which are simultaneously in resonance
with each wave, that is, whose velocities v verify both the
conditions �1�k1 ·v and �2�k2 ·v, is smaller than the total
number of particles resonantly interacting with any wave.
For example, in the frame of the theory of induced scattering
of waves on particles, only the pole defined by ��1−�2�
− �k1−k2� ·v=0 is considered. In a plasma without ambient
magnetic field and described by a Maxwellian velocity dis-
tribution, the group of particles which can be in resonant
interaction simultaneously with two waves is strongly re-
duced. Indeed, considering the picture in the velocity space,
the particles which interact resonantly with the wave ��1 ,k1�
lie on a plane, whereas those interacting resonantly with the
wave ��2 ,k2� lie on another one; the intersection of the two
planes reduces to a straight line, where only an extremely
small number of particles can interact with both waves.
However, in a magnetized plasma, it is not difficult to find
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two different waves with the same resonance velocities �even
for the same wave branch�, if one takes into account the
frequency dependence on the angle between the wave vec-
tors and the ambient magnetic field B0. In this case, almost
all resonant particles can interact with the waves simulta-
neously, so that original physical features can be pointed out
during the wave-particle interaction processes. Thus for the
case of induced scattering on particles of two waves with the
same Landau resonance velocity vR=�1 /kz1��2 /kz2 but
with different frequencies ��1��2�, the resonance velocity
of the beating mode, vR� = ��1−�2� / �kz1−kz2�, coincides with
vR �kz1 and kz2 are the wave vector components directed
along B0�. Then a conventional perturbative approach to the
process seems to be not adequate because the terms such as
Eq. �1� contain such singularities which are not considered in
the usual theory.

At last, the study of two waves interacting simultaneously
with an electron beam should reveal a mechanism of nonlin-
ear transformation of energy between the waves, through the
particles. If one considers the resonant interaction of a modu-
lated flux of energetic particles �or a periodic train of par-
ticles’ bunches� with two waves of different frequencies
and/or natures, there exists an interesting possibility to trans-
fer the energy carried by one wave to the other one and, for
example, to transform electrostatic energy into electromag-
netic energy, or inversely. At the same time, it is possible to
modify the waves’ frequencies and to increase their energy
densities. In our opinion, the following cases are worth
studying: �i� both waves are in Landau resonance with a train
of electron bunches moving with the velocity vz�vR=vR� �vR
and vR� are the resonance velocities of the two waves�; this
case is mentioned above as nonlinear induced scattering on
electrons, with vz���1−�2� / �kz1−kz2�; and �ii� one of the
waves interacts at Landau resonance ��1=kz1vz� with the
modulated beam whereas the other one interacts with it at
cyclotron resonance, �2�n�c=kz2vz ��c is the electron cy-
clotron frequency�; assuming that kz1=kz2 leads to the pro-
cess of nonlinear �Raman� scattering at �2=�1�n�c on Lar-
mor rotators.

In a magnetized plasma, the double resonance condition
between two waves of resonance velocities vR1 and vR2 and a
group of particles, i.e., vz�vR1�vR2, can be realized in the
following particular cases. A first simple example corre-
sponds, in a strongly magnetized plasma ��p��c , �p is the
electron plasma frequency�, to a quasielectrostatic lower hy-
brid wave and a right-polarized electromagnetic wave �whis-
tler� with dispersion �1��pkz1 / �k1� at kz1� �k1� and �2
��ckz2

2 c2 /�p
2 at �kz2�� �k2��, respectively �k2� is the perpen-

dicular component of the wave vector k2� ; the double reso-
nance condition vz��1 /kz1��2 /kz2 can be fulfilled for kz1
�kz2 if the lower hybrid wave satisfies kz1�k1�c2��p

3 /�c and
kz1 / �k1���p /�c, which follows from c2�k1�2��p

2. Moreover,
the parameters required to achieve the double resonance con-
dition can be obtained more accurately by solving numeri-
cally both the resonance interaction conditions and the wave
dispersion equations. Figure 1 shows the linear dispersion
curves calculated for several types of waves propagating in a
cold magnetized plasma, for fixed �c /�p and k� /kz �k� is
the perpendicular component of the wave vector�. The two
oblique lines labeled “L” and “AC” represent the Landau and

the anomalous cyclotron resonance conditions, kz=� /vz and
kz= ��+�c� /vz, respectively. The existence, for the same
value of kz, of crossing points between these lines and the
dispersion curves of the lower hybrid and the slow extraor-
dinary wave branches �labeled “LH” and “SX”� illustrates
the possibility of finding two waves interacting simulta-
neously with the same group of resonant particles.

In this paper, the double resonance problem is solved ana-
lytically using a simple one-dimensional �1D� Hamiltonian
model describing the resonant interaction of two waves with
the particles they trap, supposing that the particles move all
quasisynchronously in the potential wells of the waves. This
model allows one to describe the nonlinear characteristics of
the process at work as well as to estimate analytically its
time scale. Moreover, these results are shown to fit qualita-
tively those provided by three-dimensional �3D� numerical
simulations performed by means of a symplectic code based
on a Hamiltonian model describing the 3D interactions of
wave spectra with resonant electrons in a magnetized
plasma. The paper presents several relevant examples of
physical situations where the double resonance phenomenon
occurs; for example, when electrostatic waves interact �i� at
Landau resonances with an electron beam �bump-on-tail in-
stability� and �ii� at normal �anomalous� cyclotron reso-
nances with energetic electron fluxes through ring �fan� in-
stability. In all cases the simulations reveal that the time
evolution of the amplitudes of the two waves with close
resonant velocities exhibits some common features consist-
ing of a slow and quasiperiodical exchange of energy be-
tween the waves.

The paper is organized as follows. After a short presenta-
tion of the theoretical 3D Hamiltonian model used to de-
scribe resonant wave-particle interaction in a magnetized
plasma �Sec. II�, we focus, in Sec. III, on the situation in

FIG. 1. Dispersion relations in a cold magnetized plasma:
ckz /�p as a function of � /�p. The labels �LH�, �SX�, �O�, and �E�
indicate the lower hybrid, the slow extraordinary, the ordinary, and
the electromagnetic light ��=ckz� modes dispersion curves,
whereas �L� and �AC� represent the Landau and the anomalous
cyclotron resonance conditions, respectively; the vertical lines indi-
cate the lower and upper hybrid frequencies. The existence of cross-
ing points �black dots� between the horizontal line �ckz /�p

=const� and the curves illustrates the possibility to find a so-called
”double resonance condition” for two different waves. The fixed
parameters are k� /kz=0.224 and �c /�p=0.75.
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which two waves are interacting simultaneously with the
same population of resonant particles. If the waves have the
same �or very close� resonant velocities, we show analyti-
cally the occurrence of a nonlinear process characterized by
quasiperiodical energy exchanges between the waves; these
results are obtained using a Hamiltonian description where
the electron population consists of bunches of trapped par-
ticles moving quasisynchronously in the waves’ potential
wells. Section IV presents 3D numerical simulations of
wave-particle interactions under various double resonance
conditions, showing that the energy exchanges predicted in
Sec. III are observed. Finally, Sec. V is devoted to discuss
our results and to state our conclusions; in particular, the
dependence of the time scale of the nonlinear wave oscilla-
tions as a function of the electron flux intensity is considered.

II. THEORETICAL MODEL

The numerical simulation results and the analytical devel-
opments discussed in the next sections are based on a theo-
retical model �11,12� which describes in 3D geometry the
evolution of waves resonantly interacting with particles in a
magnetized plasma �nonlinear wave-wave interactions are
neglected compared to wave-particle ones�. Such models, the
main assumptions and properties of which will be exposed in
this section, have been first used in the field of plasma phys-
ics for studying the nonlinear evolution of the 1D beam-
plasma instability �13,15�. They turned out to be of Hamil-
tonian nature �16�, which enables one to study the self-
consistent wave-particle interaction as a classical
multidimensional mechanical system, e.g., with the help of
perturbation and averaging techniques developed in the
frame of Hamiltonian mechanics. Such methods were shown
to be fruitful, allowing one to recover in a simple and natural
way several classical plasma physics results, as the Landau
growth/damping rate, for example, but also to provide inter-
esting physical results that cannot be recovered using the
usual Vlasov-Poisson approach �17,18�. A complete textbook
dealing with such a Hamiltonian approach has been recently
published �19�, in which the interested reader can find more
details. The theoretical model exposed hereafter is an exten-
sion of the 1D Hamiltonian model to 3D geometry with a
magnetic field, the derivation and applications of which can
be found in �11,12,17,20�. Let us now present the main fea-
tures of this model.

We suppose that the plasma electrons can be divided in
two groups: a bulk component �i.e., particles moving adia-
batically in the field of the waves� with the density n0, and a
flux of energetic resonant particles with a much smaller av-
erage density nres�n0. The bulk component, which deter-
mines the waves’ dispersion, is described in the linear ap-
proximation using hydrodynamic equations. However, the
resonant particles have to be considered owing to a kinetic
approach which takes into account their full nonlinear dy-
namics in the waves’ fields.

For electrostatic oscillations in a homogeneous magne-
tized plasma, the electric field E is derived from the scalar
potential �=Re �k�k�t�exp�i�k ·r−�kt��, which consists in
the sum of plane waves with slowly varying amplitudes

�k�t�, so that the average electric field energy density for the
wave �k ,�k� is given by 	Ek

2 /8�
= �k�k�2 /16�; �k is the
frequency of the wave with Fourier component Ek and wave
vector k. Using a time averaging procedure to remove the
fast oscillating terms from the Poisson equation �11�, we ob-
tain

k2�k�k � k2 ��k

��k
�� − �k��k

� k2 ��k

��k
i

d

dt
�k � −

4�e

V
�

V

ei��kt−k·r�	nres�r,t�dr ,

�2�

where 	nres�r , t� is the density of the resonant electrons �ions
are considered as motionless�; −e
0 is the electron charge;
�k is the dielectric permittivity for electrostatic waves in a
cold magnetized plasma; V=LzL�

2 is the volume of the sys-
tem which consists of a periodic box of sizes Lz=2� /kz min
and L�=2� /k� min along and across the ambient magnetic
field B0=B0z, respectively �z is the unit vector along B0�; kz
and k� are the parallel and perpendicular wave vectors, and
kz min and k� min are their minimum values. Then the slow
evolution of the wave amplitude �k�t� due to resonant inter-
action with particles is described by

i
d

dt

e�k

mev�
2 � −

�p
2

�k�2v�
2� ��k

��k
�−12nres

n0

1

N
�
p=1

N

ei��kt−k·rp�, �3�

where me is the electron mass; v� is a fixed velocity used for
the normalization �see below�; and rp is the position of the
particle p. We substituted, in the Fourier transform of 	nres,
the integral over the phase space volume by the sum on the N
resonant particles located in the volume V �N=nresLzL�

2 �,
according to

�
V

ei��kt−k·r�	nres�r,t�
dr

V
= �

V

d2rdz

LzL�
2 � dvfres�v,r,t�ei��kt−k·r�

→
1

N
�
p=1

N

ei��kt−k·rp�. �4�

The distribution function fres of the resonant particles is nor-
malized so that the average density is nres
=
fres�v ,r , t�dvdr. The motion of an electron p is described
by the Newton-Lorentz equation

dvp

dt
+ �vp � z��c =

e

me
� �

=
e

me
Re �

k
ik�k�t�ei�k·rp−�kt�,

drp

dt
= vp, �5�

where vp�v�p ,vzp� is the velocity of the particle p. Equations
�3� and �5� lead to the conservation of the total energy H and
parallel momentum Pz of the system in the volume V:
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d

dt
H

=
d

dt
V� nres

N
�

p
�mevp

2

2
− e Re �

k
�kei�k·rp−�kt�� + �

k
Wk�

= 0, �6�

dPz

dt
=

d

dt�V��
k

kz

�k
Wk +

nres

N
�

p

mevzp�� = 0, �7�

where Wk=�k���k /��k��k2��k�2 /16�� is the energy density
of the wave �k ,�k� and mevp

2 /2−e Re �k�k exp�i�k ·rp
−�kt�� is the total energy of the particle p in the wave field.
The dynamical system formed by Eqs. �3� and �5� can also
be described using the Hamiltonian formalism developed in
Appendix B �see also Refs. �12,20��, which allows one to
build a symplectic numerical code for the efficient and accu-
rate calculation of the wave-particle evolution. It allowed the
authors to perform convergent calculations that ensure the
conservation of the dynamical invariants of the system with a
precision better than 10−3 whereas using time steps of the
order of �c�
=0.1–0.2. The symplectic algorithm and
mover are presented in Ref. �17�.

III. ANALYTICAL INVESTIGATION OF THE DOUBLE
RESONANCE PROBLEM

The purpose of this paper, as emphasized in the Introduc-
tion, is to study the situation in which two waves are inter-
acting simultaneously with the same population of resonant
particles in a magnetized plasma. First note that the wave-
particle interactions at Landau resonances can be considered
as 1D processes occurring along the direction of the ambient
magnetic field �17�, contrary to interactions at cyclotron
resonances for which the perpendicular particles’ motion is
essential. Thus for reason of simplicity, we shall focus in this
section on 1D interactions, even if the full 3D Hamiltonian
presented in Appendix B allows one to treat the problem of
cyclotron resonances. Moreover, the study of the physical
processes at work in the 1D configuration should shed some
light on the nature of the wave energy exchange mechanisms
in the more complicated case of 3D geometry. Indeed, in the
next section dealing with numerical simulations based on a
3D Hamiltonian model, one can observe the qualitative simi-
larity between the process in 1D and 3D geometries.

A classical situation in which two waves are interacting
with the same group of resonant particles in a plasma is the
well-known sideband instability. In this case, the steady state
system formed by a main wave and the particles that it traps
�known as a Bernstein-Greene-Kruskal �BGK� wave �21�� is
perturbed by a second wave of significantly smaller ampli-
tude. Analytical calculations can be performed in the linear
approximation �3–5�, showing that the second wave �also
called sideband wave� can be driven unstable and determin-
ing analytically its frequency and its maximum growth rate.
In Appendix A we recover this classical result using the the-
oretical model presented above, under the assumption that all
the particles trapped in a potential well are moving synchro-
nously like a single macroparticle.

This assumption and the Hamiltonian nature of our model
allow us to go one step further and to consider the full non-
linear interaction of two waves having nonvanishing ampli-
tudes with a train of particle bunches. The results presented
below show that there exists a stable regime for this system,
in which both waves periodically exchange energy. On the
basis of numerical simulations, we show in the next section
that these energy exchanges can be observed in more realis-
tic situations.

A. Two waves interacting with a train of particle bunches

Let us consider the nonlinear evolution of two waves in-
teracting resonantly with a periodic train of electron bunches,
without supposing that the waves’ amplitudes are small. In
order to derive analytical results, we simplify the problem by
assuming that the motion of the particles in all the bunches is
synchronized, which means that all the particles keep the
same phases relative to the waves: the resonant particles are
moving as one single macroparticle, so-called “bunch,” and
are described by the same dynamical variables. This is the
strongest assumption done in the below developed model,
and it is supported by the simulations results presented in the
next section; it can be true if the parallel wavelengths of the
waves are the same or if the ratio between them is an integer.

It is suitable to describe the 3D electron motion in the
ambient magnetic and waves’ fields with the help of the fol-
lowing pairs of conjugated canonical variables �see Appen-
dixes A and B for details�: the bunch’s longitudinal momen-
tum Pb and position Zb in the laboratory frame, its angle of
Larmor rotation �b, and its magnetic momentum Jb, as well
as its guiding center in the perpendicular plane,
R�b�Xb ,Yb /me�c�; the dynamics of each wave � is de-
scribed using the canonical action-angle variables �I� ,���.

If one assumes that the two perpendicular wave vectors
are colinear, k�1�k�2=0, the description of the perpendicu-
lar motion of the bunch can be strongly simplified. Indeed,
one observes in this case that k� ·R�b=const ��=1,2�, so
that the degree of freedom associated with the perpendicular
drift can be avoided. Moreover, the angles �� �kx�

=k�� sin ��, ky�=k�� cos ��� can also be included as initial
conditions in the waves’ phases. Thus after some canonical
transformations �see Appendix B�, the Hamiltonian Hb,n �see
Eq. �B14� in Appendix B� describing a system of two waves
interacting at a selected resonance n with a bunch of elec-
trons is

Hb,n =
�P − ��

kz�I��2

2Mb
+ �cJ + �

�=1,2
��� − n�c�I�

− qb �
�=1,2

�2��I��1/2Jn�k���b�cos ��, �8�

with

�� = ��t − arg���� − kz�Zb − k� · R�b − n��b + ��� , �9�

where Mb=Nbme and −qb=−Nbe are the mass and the charge
of the bunch which contains Nb particles; P is a constant of
the motion which represents the parallel momentum of the
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system �see also Eq. �B7� in Appendix B�; Jn is the Bessel
function of order n; �� is a parameter �see Eq. �B4� in Ap-
pendix B� defined as

�� =
8�

Vk�
2 � ���k�,���

���
�−1

. �10�

The bunch’s Larmor radius �b in Eq. �8� can be expressed as
follows:

�b�I�� = �2Jb/Mb�c�1/2 = � 2

Mb�c
�J − n�

�

I���1/2
,

�11�

where the generalized magnetic momentum J is a constant
of the motion

J = Jb + n��
I� = const. �12�

One can see from Eq. �8� that the parallel kinetic energy of
the bunch plays the role of a wave-wave interaction energy
and that the coherent motion of the bunched particles can
lead to some coupling between the waves. In the case of the
Landau resonance, n=0, one has Jb=J=const and thus �b
=const. Moreover, supposing that the perpendicular wave-
lengths are greater than the bunch gyroradius �b �k���b
1,
i.e., J0�k���b��1�, one can describe the system by the
Hamiltonian Hb,0 �see Eq. �B18� in Appendix B�,

Hb,0 =
�P − ��

kz�I��2

2Mb
+ �cJ + �

�=1,2
���I�

− qb�2��I��1/2cos ��� , �13�

with ��=��t−arg����−kz�Zb−k� ·R�b. Then the Hamilton
equations provide that

dI�

dt
= − qb�2��I��1/2sin ��, �14�

d��

dt
= �� −

kz�

Mb
�P − �

�=1,2
kz�I�� − qb���/2I��1/2cos ��.

�15�

B. Equilibrium and small oscillations of the system

The conditions dI� /dt=0 and d�� /dt=0, which deter-
mine the stationary points of Eqs. �14� and �15�, impose that
sin �1,2=0, i.e., �1,2=0 or �1,2=�; only the solution �1,2
=0 should be retained as the bunch is considered to be
trapped near the bottom of the resulting potential well �stable
equilibrium is considered�. Then the equilibrium point
�I1eq , I2eq� is obtained from

�� −
kz�

Mb
�P − kz1I1eq − kz2I2eq� − qb���/2I�eq�1/2 = 0,

� = 1,2. �16�

Assuming that the potentials at equilibrium, ���eq�
= �2��I�eq�1/2, satisfy ��1eq����2eq����eq� and that the fre-
quency shift 	�� is small compared to ��,

	�� = − qb���/2I�eq�1/2 = − qb����eq�−1, �	��� � ��,

�17�

one can write �v�=�2 /kz2−�1 /kz1 in the form

�v� = qb��1/2kz1
2 I1eq�1/2 − qb��2/2kz2

2 I2eq�1/2, ��v�� � �v��� ,
�18�

where v�� is the parallel phase velocity of the wave �. Then
Eq. �16� imposes that both waves have very close phase ve-
locities �i.e., whose difference �v� is of the order of 	v���.
To the zeroth order in �v� /v��, the equilibrium condition is
given by 	v�1=	v�2, which corresponds to

I1eq

I2eq
=

�1

�2

kz2
2

kz1
2 . �19�

Neglecting 	�� compared to �� and defining the bunch equi-
librium velocity as

Veq = �P − kz1I1eq − kz2I2eq�/Mb, �20�

one obtains from Eq. �16� that

�� − kz�Veq � 0. �21�

Combining Eqs. �19�–�21�, we get the waves’ actions I�eq0 at
equilibrium ��v�=0�

I1eq0 =
�1kz2

kz1

P − Mbv�1

��2kz1 + �1kz2�
,

I2eq0 =
�2kz1

kz2

P − Mbv�2

��2kz1 + �1kz2�
. �22�

Let us now determine the characteristic frequencies of the
oscillations in the system and therefore examine the correc-
tion to the zero order stationary state. So let us take into
account the small difference in phase velocities ��v��
� �v��� and assume that I�eq= I�eq0+	I�eq, with �	I�eq�
� �I�eq0�. Defining 	��0=−qb��� /2I�eq0�1/2 and 	v��0
=	��0 /kz�, one obtains from Eq. �18� that

�v� � 	v�20�1 − 	I2eq/2I2eq0� − 	v�10�1 − 	I1eq/2I1eq0� ,

�23�

�� + 	��0�1 − 	I�eq/2I�eq0� − kz�Veq � 0, �24�

which leads to

kz1	I1eq + kz2	I2eq � − Mb	v��0�1 − 	I�eq/2I�eq0� . �25�

Using Eqs. �23� and �25�, and neglecting the third-order term
proportional to 	v�20	v�10	I1eq, we find 	I�eq,

	I�eq

I�eq0
�

2kz��I��eq0��v� − �	v�20 − 	v�10�� − Mb	v�20	v�10

kz1	v�20I1eq0 + kz2	v�10I2eq0
,
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�,�� = 1,2, � � ��. �26�

So, in the vicinity of the stationary point, the waves’ ampli-
tudes perform small oscillations described by the linearized
equations �I�= I�eq+	I� and ��=��eq+	���

d

dt
	I� � − qb�2��I�eq�1/2	��, �27�

d

dt
	�� �

kz�

Mb
�kz1	I1 + kz2	I2� + qb���/8�1/2I�eq

−3/2	I�,

�28�

which can also be written as

� d2

dt2 +
qb

2�1

2I1eq
+

qbkz1
2

Mb
�2�1I1eq�1/2�	�1

� −
qbkz1kz2

Mb
�2�2I2eq�1/2	�2, �29�

� d2

dt2 +
qb

2�2

2I2eq
+

qbkz2
2

Mb
�2�2I2eq�1/2�	�2

� −
qbkz1kz2

Mb
�2�1I1eq�1/2	�1. �30�

Introducing the bounce frequencies of the bunched particles
in the waves’ potential as

�tr�
2 =

ekz�
2

me
�2��I�eq�1/2 =

ekz�
2

me
���eq� , �31�

and defining the frequencies

�x�
2 =

qb
2��

2I�eq
= �2

�p
2

�tr�
2

kz�
2

k�
2 � ���k�,���

���
�−1nres

n0

Nb

N
�2

,

�32�

let us search oscillatory solutions of Eqs. �29� and �30� in the
form 	��=	��0ei�t. Then

��x1
2 + �tr1

2 − �2�	�10 � −
kz2

kz1
�tr1

2 	�20, �33�

��x2
2 + �tr2

2 − �2�	�20 � −
kz1

kz2
�tr2

2 	�10, �34�

providing that

��x1
2 + �tr1

2 − �2���x2
2 + �tr2

2 − �2� � �tr1
2 �tr2

2 . �35�

The solutions 	�� are linear combinations of oscillations
with frequencies which are roots of Eq. �35�, that is, which
satisfy

2�2 � ��x1
2 + �tr1

2 + �x2
2 + �tr2

2 �

� ���x1
2 + �tr1

2 − �x2
2 − �tr2

2 �2 + 4�tr1
2 �tr2

2 . �36�

Taking into account that �x�
2 ��tr�

2 , a Taylor development
provides the two roots of Eq. �35�,

�1
2 � �tr1

2 + �tr2
2 , �37�

�2
2 �

�x1
2 �tr2

2 + �x2
2 �tr1

2

�tr1
2 + �tr2

2 � �1
2. �38�

The first regime �37� corresponds to particles oscillating at
the frequency �1 in the potential well formed by the two
waves. The slower oscillations, which occur at a much lower
frequency �2����1, reveal a more interesting phenom-
enon: it describes the low frequency exchanges of energy
between the two waves.

C. Numerical solutions

In order to illustrate the behavior of the system over a
wider range of parameters, we solved numerically Eqs. �14�
and �15� for initial conditions when the bunch is trapped in
the potential well of two waves with close kz, that is, when
P=Nbmev�+kz�I10+ I20�, with I�0= I��t=0�. All the particles
are considered to be included in the bunch, i.e., Nb /N=1.
Close to the equilibrium, i.e., when I10� I20 and �10��20
�0 ���0=���t=0��, one observes the behavior predicted by
the linearized equations �27� and �28�: the waves’ energies
I��t� oscillate at the frequency �2 while they are perturbed
by small amplitude trapping oscillations at the frequency �1.

In order to point out the influence of the bunch’s phase
relative to the waves, Eqs. �14� and �15� have been solved
near the equilibrium point, when varying the difference of
the phases of the two waves at the initial time, ��0= ��20
−�10� �see Fig. 2�. The results show that the linear approxi-
mations �27� and �28� are valid over a large interval around
the equilibrium ��0=0. For ���0���, the particle streams
as nearly free �the parallel electric field seen by the bunch is
vanishing�: no periodic oscillations take place and �2 cannot
be defined anymore. As predicted from the solution of the
linearized equations, the variation �I of the waves’ action
during the slow energy exchanges increases with ���0�:
when solving Eqs. �27� and �28� with the initial conditions
I10= I20 and ��0=�20−�10 one obtains that �I
�Mb�1

2��0 /�2kz
2 �kz=kz1=kz2�, which fits well with the nu-

merical results obtained within the range −� /2���0
�� /2, as shown by Fig. 2. �I is maximum when all the
electrostatic energy carried by the waves is exchanged be-
tween them through the slow oscillatory process, i.e., when
�I��Imax=2Ieq; it follows from Eq. �22� that

I1eq = I2eq = Ieq � �I10 + I20�/2. �39�

The oscillations with �I��Imax, which are far from the
equilibrium state where �I=0, occur anyway with a fre-
quency which is very close to that predicted by the lineariza-
tion and take place for the initial condition ��0�� /2 �see
Fig. 2�.

Figure 3 shows the trajectories in the phase plane ��� , I��
for �=1. Close to the equilibrium point �Fig. 3, left pannel�,
the behavior of the phase and the action is quasiregular and
one can observe small amplitude fast oscillations due to the
motion of the trapped particles in the bunch as well as larger
amplitude oscillations corresponding to the slow energy ex-
changes between the waves. Near the point ���0��� /2 �Fig.
3, right pannel�, the trajectory ��� , I�� is more complicated:
�� increases almost linearly �with trapping oscillations of
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very small amplitude� and consequently the action I� be-
haves as a square cosinus function �as expected from Eq.
�14��. When ��→� /2, i.e., I�→0 and dI� /dt
0, as I� is
positive, the phase jumps to the value ��=−� /2 due to the
term proportional to ��� /2I��1/2cos ����2 in Eq. �15�.

IV. NUMERICAL SIMULATIONS

On the basis of the analytical investigation presented in
the previous section, we now perform numerical simulations
involving two electrostatic waves having the same, or very
close, resonant velocities and interacting with various elec-
tron velocity distributions, for different instabilities and reso-
nance conditions. The main attention will be paid to the
physical features which are of special interest for comparison
with the estimates provided by the analytical developments
presented in the previous section.

In the numerical simulations, the variables are normalized
as follows:

k → kv�/��,

�k → �k/��,

�k → e�k/mev�
2, �40�

where �� depends on the nature of the waves considered.
Then one can present the equation of wave amplitude evolu-
tion �3� in normalized variables as

d

dt
�k = i

p��k

�k�2
1

N
�
p=1

N

ei��kt−k·rp�, �41�

where p� is a dimensionless parameter, proportional to
�nres /n0����k /��k�−1, which characterizes the intensity of the
wave-particle interaction.

Electrostatic upper and lower hybrid waves are consid-
ered in the simulations. Their dispersion relations can be
obtained from the dielectric permittivity �k of a magnetized
plasma �here thermal effects are neglected� by solving the
equation �k�k ,�k�=0 �22�, where

−1 −0.5 0 0.5 1
0.01

0.02

0.03

0.04

0.05

∆φ
0
/π

Ω
2

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

∆φ
0
/π

∆I

Ω
2lin

∆I=2I
eq

FIG. 2. Two waves of close kz interacting with a bunch of par-
ticles at Landau resonance. Upper panel: normalized frequency �2

characterizing the slow energy exchanges between the two waves
�calculated by solving numerically Eqs. �14� and �15�� as a function
of the difference of phases of the waves at the initial time,
��0 /�= �arg��20�−arg��10�� /�; the horizontal line represents the
normalized frequency �2lin calculated owing to Eqs. �29� and �30�.
Lower panel: normalized variation �I of the waves’ action during
the slow energy exchanges, as a function of ��0 /�; the horizontal
line represents the condition �I=�Imax=2Ieq, when all the energy is
exchanged between the waves; the straight oblique lines correspond
to the condition �I=Mb�1

2���0� /kz
2�2 �also see the text�. The main

normalized parameters are Mb=1, qb=1, kz1=kz2=kz=1, �1=�2

=1, �1=�2=0.01, and ��10�= ��20�=0.6 �i.e., I�eq�12.5�; arg��10�
=0 and arg��20� is varied.
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FIG. 3. �Color online� Two waves of close kz interacting with a bunch of particles at Landau resonance. Trajectories in the phase plane
��1 , I1� showing the amplitudes of the first wave’s phase and action oscillations. Left panel: the waves’ initial phases are arg��10�=
−arg��20�=0.1 and the system is close to its equilibrium point ���0�=0. Right panel: the waves’ initial phases are arg��10�=−arg��20�
=� /4 and the system is near the point ���0��� /2. The main parameters are the same as in Fig. 2.

WAVE-PARTICLE INTERACTION AT DOUBLE RESONANCE PHYSICAL REVIEW E 77, 056407 �2008�

056407-7



�k = 1 −
�p

2

�k
2

kz
2

k2 +
�p

2

�c
2 − �k

2

k�
2

k2 −
�pi

2

�k
2 . �42�

For a weakly magnetized plasma ��p��c�, the upper hybrid
waves propagate with the dispersion

�k
2 � �p

2�1 +
�c

2

�p
2

k�
2

k2 � , �43�

and ��k /��k�2 /�k. In this case, ��=�p and the corre-
sponding parameter p� in Eq. �41� is

p� =
nres

n0
� 1. �44�

Lower hybrid waves propagate in the frequency range �lh
=�pi�c / ��c

2+�p
2�1/2��k��c �at arbitrary �c /�p� with the

approximate dispersion relation

�k
2

�c
2 �

�p
2

�c
2 + �p

2

kz
2

k2 , �45�

and ��k /��k�2��c
2+�p

2� /�k�c
2, so that, choosing the nor-

malization frequency ��=�c in Eq. �41�, we have

p� =
�p

2

�c
2 + �p

2

nres

n0
� 1. �46�

As shown by the form of the dispersion relations �43� and
�45�, and due to the azimuthal symmetry of the magnetized
plasma considered, all the waves which have the same kz and
�k�� have also the same resonance velocity vR= ��k
−n�c� /kz. It is clear that small differences between the fre-
quencies and the perpendicular wave vectors of such waves
can exist without violating the equality of their resonance
velocities. Various electron distributions have been chosen in
order to study wave excitation by different instabilities and
resonance conditions; we considered mainly the case when
the initial parallel distribution fz�vz� of the resonant particles
consists in a beam. Figures 4 and 5 show the distribution
fz�vz� resulting from the particles’ interaction with two waves
��1 ,k1� and ��2 ,k2�; its evolution with time is typical of the

so-called bump-on-tail instability of a single wave in the
hydrodynamic regime �see, e.g., �1��. Thus the velocity dis-
tribution at the saturation stage appears not to depend essen-
tially on the fact that two waves �and not only one� are in-
teracting with the beam at the same resonant velocity.

At this step, let us remind some relevant features charac-
terizing the spatial self-organization of the resonant particles
during their interaction with a single wave. If the instability
is of hydrodynamic type, most of the trapped particles form a
train of bunches periodically distributed in space. All par-
ticles have close phases relative to the wave and oscillate
synchronously near the bottom of its potential well. When
the instability is of kinetic type, only a small part of the total
amount of trapped particles forms the bunch and most of
them oscillate in the well with different frequencies; after
some time, phase mixing occurs and the particles stop to
exchange energy with the wave on average. In this state the
amplitude of the wave is roughly constant and it can be
considered as a Bernstein-Green-Kruskal mode �see, e.g.,
�21��. For intermediate cases between the hydrodynamic and
the kinetic regimes, a relatively small amount of particles
move in the well with correlated phases, forming a long time
living bunch, which in turn supports the wave’s amplitude
oscillations around a saturation level in the asymptotic inter-
action stage. In our paper, we consider mainly the situation
when a significant part of the trapped particles form a well-
structured bunch �quasihydrodynamic regime�.

Figure 6 shows the variation with time of the square field
amplitudes �Ek�2 and of the phase mismatch ��k=arg��k1

�
−arg��k2

� of two lower hybrid waves ��1 ,k1� and ��2 ,k2�;
note that ��k is equal, with accuracy of a constant, to the
difference of the generalized phases �1,2 defined by Eq. �9�.
The initial values of ��k have been chosen arbitrarily and
differ for each simulation. Due to the beam instability, both
waves’ amplitudes grow exponentially and saturate due to
trapping of electrons �14,15�. If the two waves behave inde-
pendently, the time variation of �Ek�2 should present, for each
wave, small trapping oscillations around a roughly constant
saturation level. Instead of this, as the two resonant wave
velocities are equal ��vR=vR1−vR2=�2 /kz2−�1 /kz1=0�, one
observes the nontrivial interaction predicted in Sec. III be-
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0.04

0.06

v
z

f z(v
z)

FIG. 4. �Color online� Beam instability at the Landau resonance:
superposition of the initial �solid curve� and the final �gray pattern�
electron parallel velocity distributions fz�vz�; vz is the normalized
parallel velocity. The vertical line indicates the normalized resonant
velocities vR1=vR2=2.2 of the two lower hybrid waves. The nor-
malized wave vectors and frequencies are k1= �0.3,0 ,0.3�, k2

= �−0.3,0 ,0.3�, and �1=�2=0.67; p�=0.03 �Eq. �46��; ��=�c;
�p /�c�3; and N=200 000.
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FIG. 5. �Color online� Beam instability at the Landau resonance:
superposition of the initial �solid curve� and the final �gray pattern�
electron parallel velocity distributions fz�vz�; vz is the normalized
parallel velocity. The vertical lines indicate the resonant velocities
of the two upper hybrid waves interacting with the electrons. The
normalized wave vectors and frequencies are k1= �kx1 ,ky1 ,kz1�
= �0.2,0.333,0.125�, k2= �kx2 ,ky2 ,kz2�= �−0.2,0.333,0.125�; �1

=�2=1.4; p�=0.05 �Eq. �44��; ��=�p; and N=100 000.
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tween the waves and the resonant particles, that is, the de-
velopment of quasiperiodic exchanges of energy between the
two waves. The phase mismatch ��k also performs oscilla-
tions, with the same periodicity, around a constant value. The
same process of energy exchanges between two waves has
been evidenced for upper hybrid waves interacting with elec-
trons at Landau resonance, as shown by Fig. 7.

This energy exchange process is sensitive to the level of
nonlinearity �i.e., to the flux intensity p� defined in Eqs. �44�
and �46�� as well as to other parameters, as the direction of
the wave vectors in the plane perpendicular to B0 or the
velocity mismatch �vR=vR1−vR2. Figure 8 shows the time
variation of �Ek�2 for several values of �vR, revealing differ-
ent oscillatory behaviors, whose periods decrease when �vR
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FIG. 6. Beam instability at the Landau reso-
nance: variation as a function of the time �ct /2�
of the normalized square field amplitudes �Ek�2
�left panels� and of the relative phases ��k /2�
�right panels� of two lower hybrid waves, for p�

=0.02, 0.03, and 0.05 �from the upper to the
lower panels, respectively�. Both waves have the
same phase velocity, �vR=vR1−vR2=0. The first
wave ��1 ,k1� �the second wave ��2 ,k2�� is rep-
resented as a black solid �thin� line. The electron
velocity distribution and the waves are the same
as in Fig. 4.
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FIG. 7. Beam instability at Landau resonance:
variation as a function of the time �pt /2� of the
normalized square field amplitudes �Ek�2 �left
panels� and of the relative phases ��k /2� �right
panels� of two upper hybrid waves, for three dif-
ferent cases: �i� upper panels: normalized fre-
quencies and wave vectors are �1=�2=1.4,
k1= �0.2,0.333,0.125�, k2= �−0.2,0.333,0.125�,
and �vR=0, p�=0.05, N=100 000; �ii� middle
panels: same as �i� but p�=0.02; and �iii� lower
panels: the two waves present a small phase
velocity mismatch �vR�0.05, with the normal-
ized phase velocity vR1,2=�1,2 /kz1,2�11.2;
�1=1.39, �2=1.4, k1= �0.2,0.286,0.125�, k2

= �0.4,0.143,0.125�; p�=0.1; and N=100 000.
The electron velocity distribution is the same as
in Fig. 6.
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increases. Note that for an extremely small value of �vR
��vR /vR�0.005�, the period of the energy exchanges is di-
vided by a factor of 2 compared to the case when �vR=0,
and the oscillations are no more symmetric. For larger values
�that is, when �vR /vR�0.01–0.02�, the waves’ amplitudes
perform oscillations of smaller amplitude and period—
different from the trapping oscillations—around some aver-
age value. This feature, as well as the dependence on p�, are
coherent with the analytical results presented above, based
on the hypothesis that a coherent particle bunch formed dur-
ing the instability process �15� is simultaneously trapped in
the potential wells of the two waves.

One should note that the oscillatory behavior which takes
place during the saturation stage of the wave-particle insta-
bility does not depend on the kind of waves considered in the
simulations: the same qualitative behavior is observed for the
upper hybrid waves �Figs. 5 and 7� and for the lower hybrid
waves �Figs. 4, 6, and 8�. Moreover, even if this case has not
been explicitly investigated in the previous section, simula-
tions of lower hybrid waves destabilized at cyclotron reso-
nances by other types of instabilities have also been per-
formed. Relevant results are sketched in Figs. 9–12 for the
fan �ring� instability at the anomalous �normal� cyclotron
resonance �see �11,12,23� and �24��, showing similar behav-
iors of the wave-particle system: after a stage of exponential
growth, the instability saturates due to trapping of resonant
particles, after which very slow �compared to the bounce
period �tr

−1� exchanges of energy occur between the two
waves. Note that the simulation results agree with those pro-
vided by the numerical solution of the equations presented in
the previous section, for the case when the waves exchange
between each other almost all their energy.

Finally, note that in Figs. 6–8 and 10 the saturation level
of one of the waves’ amplitudes �just after the linear stage of
the instability� is much larger than that of the other wave.
This feature can be explained by the mechanism of particle
trapping: when a wave gets enough energy to trap a large
amount of electrons, the perturbations of their motion due to
trapping cause the linear growth of the other wave to saturate
�as both waves are sharing the same population of resonant
particles�. The random fluctuations �Schottky noise� that de-
termine the amplitude of the waves before the instability
occurred are responsible for the fact that one wave traps
electrons before the other. Anyway, it occurs also that both
waves saturate around the same level of energy, in particular
for the fan instability case, as shown in Fig. 11.

V. DISCUSSION AND CONCLUSION

The same oscillatory behavior characterizing the variation
with time of the waves’ amplitudes has been shown, at least
qualitatively, to result from the 3D simulations and from the
numerical solution of Eqs. �14� and �15� for ���0��� /2
�i.e., when the waves exchange between each other almost all
their energy�. Let us now compare in more details the ana-
lytical results derived in Sec. III and the numerical simula-
tions of Sec. IV. One of the most interesting parameters is the
time period T2=2� /�2 characterizing the slow energy ex-
changes between the waves. In order to obtain clear power

laws for T2 as a function of the basic physical parameters, let
us choose two waves which differ one from the other only by
the direction of their perpendicular wave vectors k�� �so
they have the same kz�, ��, and k���.

For lower hybrid waves, Eqs. �10�, �45�, and �46� lead to

�� =
4�

V

�c
2

�c
2 + �p

2

��

k�
2 =

4�n0

N

�c
2

�p
2

p���

k�
2 , �47�

so that the frequency �2 defined in Eq. �38� can be expressed
as

�2 =
qb��

��eq�
=

�c
2me

e��eq�
p���

k�
2

Nb

N
, �48�

where we took into account that qb=eNb and ��eq�
= �2�Ieq�1/2= ����10�2+ ��20�2� /2�1/2.
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FIG. 8. Beam instability at Landau resonance: variation as a
function of �ct /2� of the normalized square field amplitudes �Ek�2
of two lower hybrid waves, for different resonant velocity mis-
matches �vR between the waves. The parameters are the same as in
Fig. 4, except of the second wave for which the perpendicular wave
vector k�2= �kx2� varies as follows �from the upper to the lower
panel�: kx2=−0.300, −0.303, −0.305, −0.307, and −0.310, corre-
sponding to �vR /vR=0, 0.005, 0.008, 0.011, and 0.016, respec-
tively. The first wave ��1 ,k1� �the second wave ��2 ,k2�� is repre-
sented by a solid �thin� line. The electron velocity distribution and
the waves are the same as in Fig. 4.

ZASLAVSKY et al. PHYSICAL REVIEW E 77, 056407 �2008�

056407-10



First, in order to determine the power � of the scaling law
T2� p�

� using the 3D numerical simulations, we considered
the simple case when the two waves have finite initial am-
plitudes �i.e., much larger than the wave thermal energy or
the Schottky noise�, whereas an electron beam—with a small
enough density to avoid wave amplification—is launched
with a velocity equal to the waves’ phase velocities. In this
case, the waves’ amplitudes are oscillating regularly and Fig.
13 shows the variation of �cT2 /2� as a function of p�, the
initial waves’ amplitudes being kept constant when varying
p�. The dots represent the results provided by the 3D numeri-
cal simulations, whereas the straight line indicates the ana-
lytical estimate derived from Eq. �48�, where Nb /N�0.08
has been chosen so that the theoretical curve fits quantita-
tively the simulation data. When the formed bunch results
from the instability of a beam initially homogeneous in
space, not all the bunched particles are moving with a perfect

synchronism, some of them are being totally phase mixed.
So Nb /N should be understood as the approximate proportion
of bunched particles with respect to the total number of par-
ticles. Note that in this case, the scaling T2� p�

−1 is verified,
under the assumption that Nb /N does not depend on p�.

The more complicated situation, when the energy ex-
changes between the waves take place during the saturation
stage of the instability, has also been investigated numeri-
cally. In this case, the bunch is created by the instability
mechanism and the motion of the bunched particles remains
coherent during a long time �i.e., compared to the bounce
period of the trapped particles in the waves’ potential well�.
As discussed previously, the waves’ action at equilibrium,
Ieq, is approximately equal to the average value of the satu-
rated waves’ action �i.e., Eq. �39� is still valid when replacing
I�0 by I�s, where I�s is the action of the wave � at satura-
tion�, as the bunch formed by the trapped particles obviously
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FIG. 10. �Color online� Ring instability at the normal cyclotron resonance. Left panel: superposition of the initial �solid curve� and the
final �gray pattern� velocity distributions fz�vz�. The vertical line indicates the normalized resonance velocity of the two lower hybrid waves,
vR1=vR2= ��k−�c� /kz=4.1. The initial distribution function consists of a beam drifting along the parallel and perpendicular directions with
the normalized drift velocities vzb=4 and v�b=5, respectively; corresponding thermal velocities are vthz=vth�=0.7. Right panel: phase space
�vz ,v�� at the final simulation time. The parameters are the same as in Fig. 9, for p�=0.05.
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FIG. 9. Ring instability at the normal
cyclotron resonance: variation as a function of
�ct /2� of the normalized square field amplitudes
�Ek�2 of two lower hybrid waves �left panels� and
of their relative phases ��k /2� �right panels�,
for p�=0.04, 0.05, and 0.08 �from the upper
to the lower panels, respectively�. The first
wave ��1 ,k1� �the second wave ��2 ,k2�� is rep-
resented by a solid �thin� line. The normalized
parameters are �1=�2=0.41, k1= �0.3,0 ,−0.14�,
k2= �−0.3,0 ,−0.14�, �p /�c=3, and N=200 000.
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moves with a parallel velocity approximately equal to
v��=�� /kz�, at the bottom of the potential well of the satu-
rated waves.

Let us now determine the scaling law of T2 using the
numerical simulations of two unstable driven lower hybrid
waves interacting with a train of bunches. One can expect
that the equilibrium values Ieq of the waves’ actions at satu-
ration should be related to the flux intensity p� �11,12�. The
upper �lower� panels of Fig. 14 present the variations of T2
���k�eq

2 � as a function of p�, for beam, fan, and ring instabili-
ties, showing that the results are coherent with the estimates
of Ref. �11�, obtained using the conservation of the parallel
momentum of the wave-particle system �B7� and the as-
sumption that the linear growth rate of the instability must
vanish at wave saturation. For the fan instability, the simula-
tion results are in good agreement with the analytical predic-

tions, that is, ��k�eq
2 = ���k1

�s
2+ ��k2

�s
2� /2� p�

3 ���k�s is the poten-
tial at saturation� and T2� p�

−1. For the beam and the ring
instabilities, two regimes have to be distinguished. Indeed,
for p��0.01, only a small part of the beam particles strongly
interact with the waves �kinetic limit of the wave-particle
interaction�; for larger values of p� �p��0.03�, nearly all the
particles are trapped coherently by the waves �hydrodynamic
limit when all the particles are moving like a single macro-
particle in the waves’ potential well�. For the beam instabil-
ity, no simple power law can be determined: for large p,
the numerical simulations provide that ��k�eq

2 � p�
1.7, which

is not far from what is obtained analytically by considering
a purely hydrodynamic instability �i.e., ��k�eq

2 � p�
4/3 �11��;

note that our values of p� are not small enough to allow us
to investigate the range of purely kinetic regime where
��k�eq

2 � p�
4 �11�. For the ring instability, the power laws
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FIG. 11. Fan instability at the anomalous cy-
clotron resonance: variation as a function of
�ct /2� of the normalized squared field ampli-
tudes �Ek�2 of two lower hybrid waves �left pan-
els� and of their relative phases ��k /2� �right
panels�, for p�=0.02, 0.03, and 0.05 �from the
upper to the lower panel, respectively�. The first
wave ��1 ,k1� �the second wave ��2 ,k2�� is
represented by a solid �thin� line. The norma-
lized parameters are k1= �0.3,0 ,0.3�, k2

= �−0.3,0 ,0.3�, �1=�2=0.67, �p /�c=3, and N
=200 000.
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��k�eq
2 � p�

2.5 and ��k�eq
2 � p�

1.2 obtained numerically for the ki-
netic and hydrodynamic regimes are not very far from the
corresponding theoretical estimates, that is, ��k�eq

2 � p�
3 and

��k�eq
2 � p�

2, respectively �11�.

Moreover, one can write using Eq. �48� that

�2�p�� �
p�

��eq�p���
Nb�p��

N
, �49�

and, owing to the power laws obtained above, one can deter-
mine the scaling of T2. Then, for the beam instability, the
period T2b�T2 scales as

T2b,h � p�
−0.15 N

Nb�p��
,

T2b,k � p�
0.25 N

Nb�p��
, �50�

where the subscripts h and k indicate the hydrodynamic and
the kinetic regimes, respectively. Supposing that Eq. �48� is
also valid for instabilities taking place at the cyclotron
resonances—we are aware that this assumption is not obvi-
ous at all—one gets for the fan instability �T2f �T2�

T2f ,k � p�
0.5 N

Nb�p��
, �51�

and for the ring instability �T2r�T2�

T2r,h � p�
0.4 N

Nb�p��
,
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T2r,k � p�
0.2 N

Nb�p��
. �52�

In order to recover the scaling laws obtained for T2 as a
result of the numerical simulations �see Fig. 14�, one has
considered that the ratio Nb�p�� /N should lie within the
range

p�
1.5 �

Nb�p��
N

� p�
0.7, p� 
 1, �53�

an assumption which is reasonable, as for p�=0.1 �p�=0.01�,
0.03�Nb /N�0.2 �0.001�Nb /N�0.04�.

As a conclusion, the simple model of two waves interact-
ing resonantly with an electron bunch, which was presented
in Sec. III, is shown to be in good qualitative agreement with
the results provided by the 3D numerical simulations and to
describe adequately the nontrivial dynamics of bunched reso-
nant particles interacting simultaneously with two waves of
close phase velocities. This result allows us to expect that the
control of the processes of periodic exchanges of energy be-
tween waves via a common group of particles strongly inter-
acting with them should lead to interesting applications, as
the transformation of the energy carried by an electrostatic
wave into electromagnetic radiation. Indeed, as explained in
the Introduction, so-called “double resonance conditions”
can be found for waves of different natures and are capable
of different interaction mechanisms with resonant particles.
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APPENDIX A: INSTABILITY OF A WAVE
WITH TRAPPED PARTICLES

Here we suppose that the particles’ motion can be de-
scribed in the frame of 1D geometry and limit ourselves to
the case of the Landau resonance, �=kzvz. The motion of an
electron in the potential �=Re��1e−i��1t−k1z�+�2e−i��2t−k2z�� of
two waves ��1 ,k1� and ��2 ,k2� is described by

dpz

dt
= me

dvz

dt
= e Re�ik1�1e−i��1−k1vz0�t+i�1

+ ik2�2e−i��2−k2vz0�t+i�2� ,

dz

dt
= vz, �A1�

where ��=k��z−vz0t� is the phase of the particle relatively to
the wave � in the coordinate system moving with the phase
velocity vz0=�1 /k1. Defining the electron velocity perturba-
tion, k1	vz=k1�vz−vz0�=d�1 /dt, and expressing �2 with the
help of ���1, we get

d2�

dt2 =
ek1

2

me
Re�i�1ei� + i

k2

k1
�2ei	�t+i�k2/k1� , �A2�

where 	�=k2vz0−�2. It is suitable to add the index p to � in
order to distinguish each particle one from the other, and to
introduce the notations

�� = ����ei��,

�tr�
2 =

ek�
2 ����
me

. �A3�

So, defining 	��=k�vz0−��, and with the help of Eq. �3�
�see text�, we get

d2�p

dt2 = �tr1
2 Re�iei��1+�p�� + �tr2

2 Re�i
k1

k2
ei��2+	�t+�pk2/k1�� ,

�A4�

d��

dt
� i

8�e

k�
2 � ��/���

nres

N �
p

e−i�	��t+�pk�/k1�, �A5�

where �� is the dielectric constant of the wave �. Let us
consider an instability of the wave ��1 ,k1�, supposing that it
remains in a steady state with the trapped particles and that it
can be considered as a nonlinear BGK wave �21�. Below,
only some properties of such a solution will be examined and
used in the instability analysis. So, neglecting the influence
of the second wave ��2 ,�tr2→0�, the following equations
have to be satisfied:

d2�p

dt2 � �tr1
2 Re�iei��1+�p�� , �A6�

� d

dt
+ i

d�1

dt
���1� − i

8�e

k1
2 � �1/��1

nres

N
�

p

e−i��p+�1� � 0.

�A7�

Further we suppose that the bunches are well-formed, i.e.,
that the oscillations of the trapped particles are small, ��p
+�1��1, so that in the first approximation the solution of Eq.
�A6� can be presented as oscillations at the bounce frequency
�tr1

�p + �1 � ap cos��tr1t + �p�, ap � 1, �A8�

where the amplitudes ap and the phases �p �p=1,N� are
distributed to satisfy Eq. �A7�, that is

��1�
d�1

dt
�

8�enres

k1
2 � �1/��1

,

d

dt
��1� �

8�enres

k1
2 � �1/��1

1

N
�

p

��p + �1� . �A9�

Thus, for a steady state, the main wave ��1 ,k1� acquires a
nonlinear frequency shift
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d�1

dt
= 	�nl �

8�enres

��1�k1
2 � �1/��1

, �A10�

which is due to the trapped particles. Note that there is no
unique correspondence between the frequency shift 	�nl and
the wave amplitude��1�. This fact is related to the features of
the BGK mode solutions �21�. Then, according to well-
known results on the asymptotic stage of the Landau damp-
ing of a finite amplitude wave �14�, one can assume that the
initial phases �p of the particles are distributed randomly so
that

1

N
�

p

��p + �1� � 	ap cos��tr1t + �p�
 = 0, �A11�

showing that d
dt ��1��0 �Eq. �A9�� is satisfied. The exact

value of 	�nl in the existing steady state is not essential for
the instability analysis, and below we exclude it from our
considerations by choosing a reference frame moving with
the wave phase velocity corrected by the nonlinear frequency
shift. In this coordinate frame, �1�=�1−	�nlt is constant and
so we can put �1�=0.

In the presence of a second wave of small amplitude
��tr2��tr1, �2�0�, the oscillations of the trapped particles
are slightly perturbed

�p � ap cos��tr1t + �p� + 	�p, �A12�

where the small perturbation 	�p satisfies

d2	�p

dt2 + �tr1
2 	�p � �tr1

2 k2

k1
Re�i

�2

��1�
ei�	�t+�pk2/k1�� .

�A13�

Then, keeping only terms which are linear on 	�p, we get
from Eq. �A5� �	�=	�2�

d�2

dt
� i

8�e

k2
2 � �2/��2

nres

N
e−i	�t�

p
�1 − i

k2

k1
ap cos��tr1t + �p��

+
8�e

k2
2 � �2/��2

k2

k1

nres

N
e−i	�t�

p

	�pe−i�k2/k1�ap cos��tr1t+�p�.

�A14�

The first term in the right-hand side of Eq. �A14� does not
depend on the perturbations of the particles’ trajectories

i
8�e

k2
2 � �2/��2

nres

N
e−i	�t�

p
�1 − i

k2

k1
ap cos��tr1t + �p��

� i
8�enres

k2
2 � �2/��2

e−i	�t �A15�

and represents a forced response of the second wave to the
modulated flux of trapped particles. It corresponds to the
known fact that a nonlinear BGK wave is not a pure har-
monic wave; the amplitudes of the harmonics k�=mk1, m
=2, . . . are found from Eq. �A5�,

�k� = −
8�e

	�mk�2 � �/��k�

nres

N
�

p

e−i�	�mt+�k�/k1��p�,

�A16�

and are supposed to be small, ��k��� ��1�, if �	�m�= ��1
−�k�−vz0�k1−k���� �	�nl�. Here it is necessary to note that if
the ratio k2 /k1 of the second wave vector to the main wave
vector is not an integer, such term vanishes, as it can be
easily shown by calculating the corresponding Fourier har-
monic of the trapped particle density 	ne�z , t�=�n,p	�z−n�
−vt−zp�,

	nk =� 	ne�z,t�e−ikzdz

= �
n,p
� 	�z − n� − vt − zp�e−ikzdz

= e−ikvt�
n

e−ikn��
p

e−ikzp, �A17�

where �=2� /k1. As in the unperturbed state the coordinate
zp does not depend on the bunch number n, one can see that
	nk��ne−ikn�=�ne−2�in�k/k1�=0 if k /k1 is not an integer. If
the trapped particles’ oscillations are perturbed by the second
wave, the perturbation 	zp depends on the bunch number and
	nk�e−ikvt�ne−ikn��p	zpn does not vanish. This corresponds
to the last term in Eq. �A14�.

One should also note that in the 1D case, if two waves
have identical wave vectors, they have also the same or
slightly different frequencies and it is not possible to con-
sider them as two different waves: there is only one single
wave; but, for a 3D geometry and in the presence of a back-
ground magnetic field, two waves can have the same kz but
different frequencies. This is exactly what we consider here
in this simplified 1D description; so we can assume that the
two waves are different even if k1=k2. In this case it is not
possible to omit the first term in the right-hand side of Eq.
�A14�, but if the frequency mismatch is large enough, it can
be excluded from the instability analysis because in the lin-
ear approach it produces a partial nongrowing solution of Eq.
�A14�. Only the case 	��0 requires a special consideration,
but it corresponds to the condition of double resonance that
is examined in this paper on the basis of a nonlinear descrip-
tion of the wave-particle interaction.

Let us consider the situation when all particles oscillate
near the bottom of the potential of the main wave, supposing
that, in a first approach, it is possible to neglect the amplitude
of the unperturbed displacement of the trapped particles.
Thus we get from Eqs. �A13� and �A14� that

d2	�p

dt2 + �tr1
2 	�p �

k2

k1
�tr1

2 Re�i
�2

��1�
ei	�t� , �A18�

d�2

dt
�

8�e

k2
2 � �2/��2

k2

k1

nres

N
e−i	�t�

p

	�p. �A19�

Moreover, in the above assumption all particles are moving
synchronously, and so 1

N�p	�p�	�p. Then, introducing the
solution of Eq. �A19�,
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�2ei	�t � �t 8�enres

k2
2 � �2/��2

k2

k1
ei	��t−t��	�p�t��dt�, �A20�

in Eq. �A18�, one gets

d2	�p

dt2 + �tr1
2 	�p � �tr1

2 k2
2

k1
2

8�enres

��1�k2
2 � �2/��2

�Re�i�t

ei	��t−t��	�p�t��dt�� .

�A21�

Searching growing solutions of the form 	�p=Ae−i�t+c.c.,
one finds that

��tr1
2 − �2�Ae−i�t + c.c.

� − �tr1
2 k2

2

k1
2

8�enres

��1�k2
2 � �2/��2

Re� Ae−i�t

	� + �
+

A�ei��t

	� − ���
�A22�

�−
1

2
�tr1

2 k2
2

k1
2

8�enres

��1�k2
2 � �2/��2

�� 1

	� + �

+
1

	� − �
�Ae−i�t + c.c.� , �A23�

where A� ���� is the complex conjugate of A ���. Finally we
get the dispersion relation which determines the growth rate
of the second �sideband� wave and the perturbation of the
particles’ oscillations

�2 − �tr1
2 � �tr1

2 k2

k1

4�enres

��1�k2
2 � �2/��2

� 1

	� + �
+

1

	� − �
� .

�A24�

Taking into account the difference of notations and defini-
tions, one can see that Eq. �A24� has some similarity with the
equation obtained for the sideband instability in Ref. �3�.
Indeed, noting that �we use hereafter ���2�

��

��2
�	� + �,k2� =

��

��2
�� + k2vz0 − �2,k2�

� ��� + k2vz0,k2� , �A25�

and owing to the property of the dielectric permittivity
���−�� ,−k�=��� ,k� �25�, one gets

��� + k2vz0 − 2�1,k2 − 2k1�

� ���2�1 − k2vz0 − ��,2k1 − k2���

�
��

��2
�2�1 − k2vz0 − �� − �2��

�
��

��2
�vz0�2k1 − k2� − �� − �2��

�
��

��2
�	� − �� , �A26�

where we took into account that k1�k2 and neglected the
small imaginary part of the dielectric permittivity �. Then,
defining �+k2vz0→� and �p,res

2 =4�e2nres /me, Eq. �A24�
can be rewritten at k1 /k2=1 in the form presented in Ref. �3�.

1 �
�p,res

2

�2 − �tr1
2 � 1

���,k2�
+

1

��� − 2�1,k2 − 2k1�� .

�A27�

However, one has to stress that the result �A27� of Kruer et
al. �3� and Eq. �A24� are not identical. This can be explained
by the fact that two different problems are investigated.
Kruer et al. suppose that at initial time, except of the main
wave trapping particles, there are many other waves with
different wave vectors and quite small amplitudes. Among
this set of waves, there are only two waves which are un-
stable and grow. On the contrary, the present paper supposes
that except the main wave, there is only one other wave and
its aim is to find the conditions when this wave is unstable.

The growth rate �=Im��� can be calculated supposing
that −Re�����tr1��. Assuming that only one satellite
wave �so-called red wave� is growing and neglecting corre-
spondingly the second term in the right-hand side of Eq.
�A24�, one can see from

��tr1
2 − �2��	� + �� � 2i��tr1�	� + �� = −

k1

k2

4�e2nres

me � �/��2

�A28�

that the maximum growth rate �max is reached at 	���tr1
and is expressed as

�max �� k1

2k2

4�e2nres

�tr1me � �/��2
�� �p,res

2

2�tr1 � �/��2
.

�A29�

Note that the same growth rate can be obtained for the blue
satellite wave if one keeps the second term on the right-hand
side in Eq. �A24�. Using the obtained solution, one can see
that the second term omitted in Eq. �A24� is small if �p,res

2

��tr1
3 ��

��2
; in the opposite case, both the red and blue satellite

waves overlap, which means that their growth rates become
of the same order as the difference between their frequencies.

APPENDIX B: HAMILTONIAN DESCRIPTION
OF THE BUNCH-WAVES SYSTEM

1. Hamiltonian formalism for wave-particle interaction

When the nonlinear coupling between the waves can be
neglected compared to their interactions with the particles,
the Hamiltonian H describing a group of N resonant elec-
trons interacting with a packet of Nw electrostatic waves
��k ,k� in a magnetized plasma is given by �19�

H = �
p=1

N

Hp + �
k

Nw

Hk − �
p=1

N

�
k

Nw

e�kp. �B1�

Let us detail each term of this Hamiltonian, keeping in mind
the notations of Sec. II: rp= �xp ,yp ,zp� is the position of the
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particle p, vp= �vxp ,vyp ,vzp� is its velocity, and �k is the slow
varying complex amplitude of the potential of the wave
��k ,k�. Hp is the kinetic energy of the nonrelativistic elec-
tron p moving in the ambient magnetic field B0=B0z, that
can be written using the angle-action formalism as

Hp =
pzp

2

2me
+ �cJp, �B2�

where pzp=mevzp is the parallel momentum of the particle
and Jp=me�vxp

2 +vyp
2 � /2�c is its magnetic momentum. Hk is

the energy of the plasma eigenmode ��k ,k�, that is

Hk = �kIk, �B3�

where Ik= ��k�2 /2�k is the canonical action of the wave and
�k depends on the wave dispersion as

�k =
8�

Vk2� ���k,�k�
��k

�−1

. �B4�

The last term in Eq. �B1� describes the interaction between
the particles and the waves and can be written as

�kp = �2�kIk�1/2cos�k · rp − �k� , �B5�

with k ·rp=k ·Rp+ �2Jp /me�c�1/2�kx cos �p+ky sin �p� and
Rp= �Xp ,Yp /me�c ,zp�; �Yp ,Xp�, �Jp ,�p�, and �pzp ,zp� are the
conjugated pairs of momenta and positions; Rp is the guiding
center position of the particle p, and �p=−arctan�vxp /vyp� is
the azimuthal angle associated to the action Jp. The wave
phase �k=�kt−arg��k� is canonically conjugated to Ik.

In order to make the cyclotron resonances appear explic-
itely, we expand the interaction term in Fourier series with
respect to the angle �p, using eix sin �=�n=−�

+� Jn�x�ein�, where
Jn�x� is the Bessel function of integer order n. Introducing
the angle �k so that kx=k� sin �k and ky =k� cos �k, as well
as the Larmor radius �p= �2Jp /me�c�1/2 of the particle p, one
obtains

�kp = �2�kIk�1/2 �
n=−�

+�

Jn�k��p�cos�k · Rp + n��p + �k� − �k� ,

�B6�

showing that the cyclotron resonance condition for the par-
ticle p and the wave ��k ,k� is kzzp+n�p−�k�const, i.e.,
kz�vz��k−n�c.

The evolution of the system is then obtained by using the
Hamilton equations dp /dt=−�H /�q and dq /dt=�H /�p,
where �p ,q� are the pairs of canonically conjugated vari-
ables. One can check that the parallel momentum P of the
system is a constant of the motion

P = �
k

kzIk + �
p

pzp = const. �B7�

2. Bunch-waves system

Let us consider the case of one bunch �that is, a single
macroparticle� formed by Nb resonant particles moving syn-
chronously in the potential of Nw electrostatic waves defined

by the angle-action variables �I�,���, the frequencies and
wave vectors ��� ,k��, as well as the interaction parameters
�� �Eq. �B4��, where �=1, . . . ,Nw. The Hamiltonian �B1� of
this bunch-waves system can be decomposed as follows:

H = ��
p=1

Nb

Hp + �
p=Nb+1

N

Hp� + �
k

Hk

− e�
k
��

p=1

Nb

�kp + �
p=Nb+1

N

�kp� , �B8�

where one can assume that e�k�p=Nb+1
N �kp�0 and

�p=Nb+1
N Hp�const as the N−Nb resonant electrons which do

not belong to the bunch are submitted to phase mixing. Note
that we ignore here the influence of the trapped phase-mixed
particles on the waves’ evolution and therefore on the motion
of the trapped bunched particles. Thus the system can be
described by the Hamiltonian Hb,

Hb = �
p=1

Nb � pzp
2

2me
+ �cJp�

+ �
�

���I� − e�
p=1

Nb

Re��2��I��1/2ei�k�·rp−����� ,

�B9�

where the momenta and the positions of all the bunched
particles are equal, i.e., pzp= pz, Jp=J, and rp=r for p
=1, . . . ,Nb. Then one can define new canonical variables
�Pb ,Zb�, �Jb ,�b�, and �Yb ,Xb� representing the bunch’s con-
jugate momenta and positions,

Pb = Nbpz,

Jb = NbJ ,

Yb = NbY , �B10�

Zb =
1

Nb
�
p=1

Nb

zp = z ,

�b = � ,

Xb = X . �B11�

Avoiding the 3�Nb−1� degrees of freedom owing to the
3�Nb−1� independent constraints pp= Pb and rp=rb, one ob-
tains

Hb =
Pb

2

2Nbme
+ �cJb + ��

���I�

− eNb Re��2��I��1/2ei�k�·rb−����� . �B12�

Note that Hb �Eq. �B12�� is similar to the Hamiltonian de-
scribing the interaction between the waves and a single par-
ticle of mass Mb=Nbme and charge −qb=−Nbe. Below we
will use such notations and only express the final results in
terms of me, e, and Nb.
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In order to simplify the problem, let us consider that all
the bunched particles are moving with a velocity close to the
resonance velocity defined by kz�Pb�t=0� /me+n�c−���0,
for all the waves � �what is justified by the trapping mecha-
nism�, and let us neglect the influence of the other reso-
nances by keeping only the contribution of the resonance n,
exp�i�k� ·rb−�����Jn�k���b�exp�i�k� ·Rb+n��b+���−����.
Note that in the most realistic case where only two waves
are considered ��=1, ��=2�, it follows from dk� ·R� /
dt= �e /me�c��2���I���

1/2sin�k�� ·rp−�����kx�ky��−ky�kx���
that k� ·R�=const ��=1,2� if k�1�k�2=0; then the degree
of freedom associated with the perpendicular particles’ drift
can be avoided. The angles �� verifying kx�=k�� sin �� and
ky�=k�� cos �� can also be included as an initial condition
in the waves’ phases by defining I�� = I� and ��� =��

−k� ·R�−n��. Then the Hamiltonian is

Hb =
Pb

2

2Mb
+ �cJb + ��

��I��

− qb Re ��
�2��I���1/2Jn�k���b�ei�kz�Zb+n�b−����,

�B13�

and after performing several canonical transformations, we
get �omitting primes�

Hb,n =
�P − ��

kz�I��2

2Mb
+ �cJ + ��

��� − n�c�I�

− qb��
�2��I��1/2Jn�k���b�cos ��, �B14�

where I�= ����2 /2�� and ��=��t−arg����−kz�Zb
−k�� ·R�b−n��b+���. The bunch’s Larmor radius �b is

�b�I�� = �2Jb/Mb�c�1/2 = � 2

Mb�c
�J − n��

I���1/2
.

�B15�

The generalized momenta J=Jb+n��I� and P= Pb
+��kz�I� are constants of the motion �their conjugated vari-
ables Zb and �b do not appear explicitly in Hb,n�. Note that in
Eq. �B14� the parallel kinetic energy of the bunch plays the
role of a wave-wave interaction energy and that the coherent
motion of the bunched particles can generate some coupling
between the waves. The bunch Larmor radius �b may also
play this role in the case of the cyclotron resonances n�0
�Eqs. �B14� and �B15��.

Let us now focus our attention to the case when only two
waves are present, in order to point out a specific coupling
mechanism responsible for the periodic exchanges of energy
between the waves. The Hamiltonian equations provide, us-
ing Eq. �B14� and taking into account Eq. �B15�, that

d

dt
I� = −

�

���

Hb,n = − qb�2��I��1/2Jn�k���b�sin ��,

�B16�

d

dt
�� =

�

�I�

Hb,n

= ��� − n�c� −
kz�

Mb
�P − kz1I1 − kz2I2�

− qb cos ������/2I��1/2Jn�k���b�

− �2��I��1/2dJn�k���b�
dI�

� , �B17�

where �=1,2. For the Landau resonance n=0, the last term
in Eq. �B17� vanishes, as �b= �2J /Mb�c�1/2=const. Then the
only coupling between the waves results from the parallel
motion of the bunch. Supposing that k���b
1, i.e.,
J0�k���b��1, the system can be described by the Hamil-
tonian

Hb,0 =
�P − ��

kz�I��2

2Mb
+ �cJ

+ ��
���I� − qb�2��I��1/2cos ��� . �B18�

The case of cyclotron resonances n�0 is more complicated,
as the last term in Eq. �B17� contributes to the coupling
�modification of the frequency detuning due to the particles�

d

dI�

Jn�k���b� = k��Jn��k���b�
d�b

dI�

= −
nk��

Mb�c�b
Jn��k���b� .

�B19�

Let us show that, for the resonances n= �1, this coupling is
in most cases negligible. For the ring instability at the normal
cyclotron resonance �n=1�, the particles which interact
strongly with the waves verify J1��k��b��0, that is, k���b
�1.8 �23�; then it is not necessary to take into account the
last term in Eq. �B17� and one can suppose that J1�k���b�
�const. The validity of this assumption has been checked
with the help of numerical simulations. For the fan instability
at the anomalous cyclotron resonance �n=−1�, assuming that
k�� is large enough so that k���b
1 for all particles in the
bunch, one can write J−1�k���b��−k���b /2 which provides
for Eq. �B17� that

d

dt
�� = ��� + �c� −

kz�

Mb
�P − kz1I1 − kz2I2�

+ k��qb����/8I��1/2�b +
1

Mb�c

���I�/2�1/2

�b
�cos ��.

�B20�
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